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The fibre distribution in a sheet of paper, referred to as the formation, is largely the 
result of turbulence, a stochastic process. Continuous time-series models developed 
from discrete light-transmission profiles are used to characterize formation. The models 
are used to obtain explicit expressions for the spectral moments of the profiles. Frcm 
the moments, estimates of two characteristic lengths of the fibre distribution can be 
obtained and are interpreted as the average and largest flock size. These lengths are 
used to develop an index for evaluating the formation of four samples of base sheet 
paper. The results of this characterization agree with other methods, but this technique 
has the advantage of providing a physical interpretation of the index. 

1. Introduction 
The distribution of fibres in a sheet of paper is referred to as the formation. Since 

the fibre distribution is a fundamental part of paper making, there is a need to char- 
acterize formation quantitatively so that it can be monitored during normal paper 
machine operation and so that changes in formation due to different operating con- 
ditions can be evaluated. 

Instruments such as the Thwing-Albert and Quebec North Shore Mead formation 
testers have been used to analyse the paper’s light-transmission profile. The Thwing- 
Albert tester measures the profile variance, but this single index is not based on 
physically meaningful parameters related to the fibre size distribution. The Quebec 
North Shore Mead instrument uses an analog harmonic analyser to obtain a graph 
of the wavelength spectrum of the profile, however the graph still requires qualitative 
interpretation. 

Since formation is largely the result of headbox turbulence, the parameters that 
are used to characterize turbulence might be appropriate for characterizing formation. 
Two characteristic lengths derived by G.  I. Taylor from the correlation function, or 
alternatively the spectral moments, of turbulence measurements have been suggested 
for this purpose. However, the sample correlation function and sample spectrum 
which are used to estimate these lengths are poor statistical estimates. As a result, 
the usefulness of this characterization technique has not been fully realized. 
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In this paper, an improved method for obtaining spectral estimates is used toevaluate 
the characteristic lengths derived by Taylor. The method for determining the spectrum 
involves finding an adequate time-series model in the form of a stochastic differential 
equation, which leads directly to an explicit expression for the spectrum and the 
necessary spectral moments. Using this approach, the formation of four base sheet 
samples of paper made under different operating conditions is analysed. The results 
of this quantitative analysis are used to rank the formation of the four samples, and 
this ranking is compared with both a qualitative and a Thwing-Albert evaluation 
made of the same samples. 

2. Turbulence parameters and their relation to formation 
The final distribution of fibres in a sheet of paper is affected by two interacting 

phenomena which occur in the fibre suspension, viz. flocculation and turbulence 
(Parker 1971). Flocculation is localized variation of the fibre concentration, which 
is a function of chemical and molecular forces and fibre morphology, which tend to 
draw individual fibres together to form flocks. Turbulence or localized velocity 
variations in the suspension create shear forces which disperse the flocks. Thus i t  is 
the equilibrium between flocculation and turbulence that produces the distribution 
of flocks which is observed in the paper. 

Since paper formation is the result of turbulence, Reiner & Wahren (1970) and 
Norman & Wahren (1972) proposed that parameters derived by G .  I. Taylor to 
characterize turbulence be used to evaluate formation. In  these papers, the relation 
between formation and turbulence is discussed, characteristic lengths from Taylor’s 
work are presented, and the discrete Fourier transform is suggested as a way to estimate 
the spectral density. However no experimental results are presented. 

In  his studies of diffusion in a turbulent field, Taylor (1935) defined two char- 
acteristic lengths: the macroscale and the microscale. These lengths were derived 
from the autocorrelation function of the stochastic velocity field. The autocorrelation 
of the velocity u can be expressed as a function p,(Z) of position when an Eulerian 
co-ordinate system is used or as a function p,(t) of time when a Lagrangian co-ordinate 
system is used. The Eulerian co-ordinate system will be the one used in this develop- 
ment. 

If an Eulerian set of co-ordinates is chosen then the two characteristic lengths I ,  

Zlb ImpU(Z)dZ, = --- 
and h are defined by 

0 

The length 1, is a measure of the minimum separation between points in the flow 
where the velocities are independent, i.e. a measure of how quickly the autocorrelation 
dies out. Taylor interpreted I ,  as the average size of eddies. A measure of the size of 
the smallest eddies in the flow which dissipate energy is provided by A. This value 
can also be thought of as the point where a parabola tangential to p,(O) intersects 
the 1 axis. These two values are shown in figure 1.  

An equivalent representation of the stochastic nature of the turbulent field can be 
given in the frequency domain. Using the definition 
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FIGURE 1. Graphical interpretation of h and ZI in terms of the autocorrelation function. 

of the spectral density function and the properties of the moments of the spectral 
density gives 

P m  

J w2Su(w) dw 

2(2n)2 [" Su(w)dw' 

1 -a nfJu(0) -- ' A2 - 
= [" Su(o)dw 

Note that yJ7) is the autocovariance function, which is related to the autocorrelation 
function by pJ7) = yu(7)/yW(0). 

When measuring formation, the light-transmission profile of the paper is commonly 
used. The light intensit,y transmitted through the paper is inversely proportional to 
the local density variation, and hence can be used to indicate the fibre size distribution. 
Then, assuming that formation is isotropic, the statistical properties of the light- 
transmission profile can be used to characterize the formation of the base sheet paper. 

Furthermore, if the light-transmission profile reflects the postulated mechanism 
of formation, i.e. an equilibrium between flocculation and turbulence, the macroscale 
and microscale for turbulence can be interpreted as parameters of the fibre size 
distribution in the paper. Since the final flock size is determined by shear forces which 
disperse the flocks, the largest flock size will be determined by the smallest eddies in 
the turbulent field. Thus h can be interpreted as the largest flock size. The macroscale 
is defined as the average eddy size in a turbulent field, so when applied to formation 
I ,  can be termed an average flock size. 

3. Determination of spectral moments from time-series models 
The characteristic lengths I ,  and h given by (1)  and (2) in the time domain and (3) 

and (4) in the frequency domain are functions of the spectral moments m,, the variance 
and the variance m2 of the first derivative of the light-transmission profile. Con- 
ventional methods of estimating moments from either the sample autocorrelation 
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function or the sample spectrum have the disadvantages of bias and high variance. 
While smoothing techniques can be used to reduce the variance, a penalty is paid in 
terms of increased bias for a specific length of data. 

Because of these problems, a different approach is used in this paper which involves 
first fitting a time-series model to the stochastic data. Then from the model, using the 
explicit expression for the spectral density, or equivalently the autocovariance function, 
the spectral moments are determined. 

A new modelling technique termed the dynamic data system (DDS) can be used to 
develop a stochastic differential equation from discrete time-series data (Wu 1976). 
This technique involves a stepwise procedure for determining a stochastic differential 
equation 

where 
E[Z( t )  Z( t  + T ) ]  = gz S(T), 

which is termed a continuous autoregressive moving-average model of order n and 
m, an AM(n,m) model. If the continuous stochastic process is represented by ( 5 ) ,  
then, by sampling the process X ( t )  at uniform intervals A, the discrete time series 
{Xt) ,  t = 1,2,  . . . , N ,  can be used to estimate the parameters ai and b,. This is done by 
using a difference-equation form of a model termed the uniformly sampled auto- 
regressive moving-average (USAM) model: 

where %+kl = at ' k .  

Although the form of ( 6 )  is the same as that of the familiar discrete autoregressive 
moving-average model, note that ( 6 )  is always of autoregressive order n and moving- 
average order n- 1, and that the discrete parameters $i and Oi are functions of the 
sample interval and the coefficients of the AM(n, m) model. 

Once the AM model for the stochastic process X ( t )  has been determined, the auto- 
covariance function can be explicitly determined as 

Y x ( 4  = c, exP (P117I ) + cz exp (Pz 1.1 ) + . . - + c n  exp (Pn 171 ), (7) 

where the p i  are the characteristic roots of ( 5 ) ,  defined by 

JJ (p - pui) = (pn + pn-lan-l + . . . + ao) 
n 

and 

with 

= 0, 

v, = rI rI ( P j - p i ) ,  i,j * k, 
i = l  j=i+l 

R(&) = l+blP,,+ ...+ b,pT. 

Here the overbars denote complex conjugates. 
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When the AM model is known (i.e. when the orders n and m and the parameters 
a, and b, have been estimated), the spectral density follows directly from (5 )  and is 

A n =  

given by 
CT; I1+bl(iw)+ ... +bm(iw)m12 S(0) =- 
27r 1 (io)" + an-l(iw)n-l + . . . + a0p 

an-l an-5 ... 0 
a, an4 ... 0 
0 an-1 a,, ... 0 
* 

Estimation of the spectral density using discrete autoregressive models was pro- 
posed by Parzen (1972).  However, the use of AM models is a new approach made 
possible by the derivation of the explicit relations between the dependent parameters 
of the USAM(n,m) model and the parameters of the AM(n,rn) continuous model. 
For the case of an AM( 2 , O )  model, the proof of the parameter relations and the implica- 
tions with regard to aliasing of the spectral estimates are discussed in Pandit & Wu 
(1976).  

From the estimated parameters a, and b, of the AM(n,m) model the spectral 
moments 

m 

ma = 1 w21s(w)dw 
-a3 

can be evaluated, S ( w )  being given in (8). The moment integrals are of the form 

mZr = 31 gn(z)dx 

gn(iw) = ( iw)'R(iw) ( - iw) 'R(  - i w )  

= /3, +P1(iw)2 + . . . + /3n-l(iw)2(n-1), 

27r - m hn(z)  h,( - x)' 
where z = iw and 

R,(iw) = (iw)" + an-l(iw)n-l + . . . + ao. 

The integral is bounded if I +m < n, which imposes a condition on the existence of 
higher-order spectral moments. The value of the moment is 

mZl = ( - 1)n-1 o; Mn/2An, 
where a, = 1 and 

Mn = 

The expression in ( 9 )  occurs frequently in spectral analysis and can be evaluated 
recursively; see for example Astrom (1970).  
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Dandy roll 

Headbox 
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FIUURE 2. Schematic diagram of the wet end of a, Fourdrinier paper machine. 

Headbox con- Dandy -roll 
Condition sistency (yo) Drag? (ftlmin) position 

1 0.60 25-30 Down 
2 0.75 60-70 Down 
3 0.75 60-70 UP 
4 0.50 0 UP 

t The drag is defined as the difference between the wire velocity and velocity vs of the stock 
out of the headbox. 

TABLE 1. Four formation conditions. 

4. Characterization of formation using the characteristic lengths 
from AM(n, rn) models 

Experiments were conducted on a production paper machine (figure 2) to produce 
four sets of base sheet paper. During the experiments three operating variables that 
affect formation were varied: the headbox consistency, the drag and the dandy roll 
position. The settings for the operating variables for the four conditions are given in 
table 1.  Condition 1 is the normal operating condition for this machine. 

Light-transmission profiles were obtained for each of the four conditions. A laser 
light source and two detectors were used. A beam splitter was used to provide a 
reference and a transmission light beam. The ratio of the intensity of the transmitted 
beam to that of the reference beam served as an analog measure of the formation. 
A sample interval of 0.020in. (0.51 mm) was used to digitize the analog signal and 
1024 samples were taken. Condition 1, which is representative of the digitized profiles 
obtained in this manner, is shown in figure 3 (plate 1) .  

The digitized data were modelled using the DDS modelling technique and the 
estimation procedure outlined in the appendix. These results are summarized in 
table 2, which gives the order of the model, parameter estimates, and the moments m, 
and m2 needed to determine the characteristics lengths 1, and A. Note that the form of 
the models presented in table 2 is different from the general form given by ( 5 ) .  The 
coefficient a. = 1 while a coefficient a, is introduced. This parameterization is obtained 
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Con- 
dition Model as x a2 x al x b, x CT: x mo x 10-8 m2 x 10 

1 AM(2,O) 5.2930 3.9692 1.3327 16.79 3.172 
2 AM(3,O) 2.5325 5.8237 6.2702 3.8686 33-15 5-692 
3 AM(3, 1) 2.9396 8.2644 6.3429 -6.8027 4.2281 37.29 8,540 
4 AM(2,O) 4.5314 4.3416 1.9763 22.76 5-023 

TABLE 2. AM models and spectral moments for four formation conditions. 

~ ~~~ 

px ( 7 )  P A 7 1  p d X / P t  ( 7 )  

0.2 0.4 0.6 0.8 1.0 
r(in.) 

- 1.0 - 1.0 - 1  0 

sx (f 1 s x  (. f)  sd,%'/dt (./I lo4 ::::k 0.08 ,;; ;k, 
0.04 

0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25 

A M  (2 ,O)  FFT AM (2, 0) 
FIGURE 4. Autocorrelation and spectral density functions determined from an AM(2, 0) 

model and using the fast Fourier transform (FFT) for condition 1. 

f Win.) f (ciin.1 .f (ciin.1 

by dividing (5) by ao, so that a,2 is divided by a:. The result of this transformation 
is that Z ( t ) ,  the white-noise process, has the same units as X ( t ) .  

A representative autocorrelation function p(7) and spectral density S(o) for both 
X ( t )  and the slope determined by modelling the data are shown in figure 4, with the 
sample autocorrelation and spectral density calculated using the fast Fourier transform 
provided for comparison. The plots show that by modelling the data smoothed 
estimates of the autocovariance and spectral density are obtained. In addition the 
estimates are explicit functions that can be used to evaluate the characteristic lengths 
associated with formation. 

Using the moments from table 2 and the spectral density, the characteristic lengths 
for the macroscale and microscale were evaluated using (3) and (4). However, quali- 
tative evaluation of formation by viewing a sheet of paper with transmitted light 
favours those sheets which have a relatively large range of fibre sizes but a small 
average structure, Thus a quantitative index based on the ratio of h and I ,  will indicate 
better formation if the range of sizes is large relative to the average size. 

To evaluate this hypothesis, All, was calculated and compared with the results 
obtained with a Thwing-Albert formation tester (large values of the Thwing-Albert 
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A = largest 1, = average 
Condition size (in.) size (in.) All ,  from model Thwing-Albert index 

1 0.2044 0,0397 5*1486(l)t  128.5 10.5$ (1) 

3 0.1857 0.0567 3-2751 (4) 88*0+4.0 (4) 
4 0.1892 0.0434 4.3594 (2) 100.0 + 3.0 (2) 

2 0.2144 0.0584 3-6712 (3) . 91*5+ 1.5 (3) 

t Numbers in parentheses indicate rank; 1 is best. $ Based on two tests. 

TABLE 3. Characterization and ranking using AM models. 

index indicate ‘good’ formation). The characteristic lengt,hs h and 1, determined 
from the AM models and a comparison of the index All, with the Thwing-Albert 
results are summarized in table 3. Note that the rankings obtained by the two methods 
agree. However the index determined from the AM models can be related to the 
physical characteristics of the fibre distribution. 

In  addition, a qualitative evaluation was made by viewing the base sheet with 
transmitted light. On the basis of experience, the concensus was that condition 3 was 
definitely the poorest formation. Condition 1 was rated better than conditions 2 and 
4, but the exact rankings of conditions 2 and 4 differed among observers. 

From table 3, the largest fibre sizes h for conditions 1 and 2 are about the same 
(0.2044 and 0.2144in.) while conditions 3 and 4 form a second class with A’s of 0.1857 
and 0.1892 in. respectively. Considering the operating conditions listed in table 1, 
thisgrouping by h could be attributed to the dandy roll, which was down for conditions 
1 and 2 and up for conditions 3 and 4. The average fibre size given by 1, in table 3 
indicates the fibre size distributions for these four conditions. Conditions 1 and 4 give 
a smaller average size (0.0397 and 0.0434in.) than conditions 2 and 3 (0.0584 and 
0.0567 in.). The operating conditions suggest that low headbox consistency and drag 
may be responsible for the smaller average fibre size. 

Another comparison can be made by using the wavelength spectral density &(A), 
which is evaluated by means of the transformation 

h = 27l/w, 

In figure 5, S(h)  is plotted for conditions 1-4 and indicates the fibre size distribution 
in a manner similar to the graphical results obtained with a Quebec North Shore 
Mead formation tester. Qualitatively, the plots for conditions I and 4 and for conditions 
2 and 3 are similar, but it is difficult to make a quantitative assessment of the formation 
on the basis of the plots alone. However, on considering the All, values in table 3, 
it  can be seen that they can be placed in two categories which are consistent with the 
qualitative classification of the plots. 

Finally, when using the AM models to obtain spectral moments for evaluating h 
and E l ,  it. is assumed that the light-transmission profile is steady. If the profile is un- 
steady, owing to instrumentation drift, for example, the results determined with this 
method (and others) can be misleading. Under these circumstances, the source of the 
unsteadiness should be investigated or compensated for by using a deterministic 
component in (5). 
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k (in.) 

Conditiori 1 

10-1 100 10' 
A (in.) 

Condition 3 

10-1 100 10' 
A (in.) 

Condition 2 

1 0 - 3  io-lL 10-1 100 10' 

/I (in.) 

Condition 4 
FIGURE 5. Wavelength spectral density functions 

determined from AM models. 

5. Conclusions 
A technique for characterizing and quantitatively ranking formation, the flock size 

distribution in a sheet of paper, was used to evaluate base sheet samples made under 
four paper machine operating conditions. This approach uses physically meaningful 
parameters related to the fibre size distribution. These parameters can be estimated 
by developing a time-series model for a discrete light-transmission profile in the 
form of a stochastic differential equation. Specific conclusions are the following. 

(i) Two characteristic lengths, A ,  a measure of the largest flock size, and I , ,  a measure 
of the average flock size, can be used to characterize formation. Both are defined in 
terms of the spectral moments m, and m2 of a light-transmission profile of a paper 
sample. Moreover, these lengths can be interpreted in terms of turbulence, amechanism 
generating the flock size distribution. 

(ii) Explicit expressions for the spectral density and spectral moments can be 
obtained using AM time-series models determined from discrete light-transmission 
profiles. Although the models may differ for different operating conditions, the spectral 
densities are similar. 

(iii) A single index &/A was used to rank the formations of four paper samples made 
under different conditions. This ranking agreed with a Thwing-Albert tester and 
qualitative evaluation, however the physical interpretation and quantitative results 
make the ratio l , /A  more appealing. 

(iv) On the basis of the process variables considered and the interpretation of h 
and I , ,  it appears that the dandy roll reduces the largest flock size A, while low headbox 
consistency and low drag reduce the average flock size. 
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Appendix. Estimation of AM time-series model parameters from discrete 
data 

Estimation of the parameters ai and b, in the AM(%, m) model 

from N discrete data X ,  sampled at  uniform intervals A is a nonlinear estimation 
problem. The function to be minimized is 

t = l  
from the discrete USAM(%, m) model 

12 II- 1 

The estimation procedure invoIves selecting parameters ai and b,, evaluating $j and 
8, from these parameters and using (A 2) to compute the sum of the squares of the a,, 
Computer programs using nonlinear techniques such as Gaussian, gradient or Marquart 
compromise algorithms have been used to minimize the sum of the squares of a,. 

For given n and m, the fundamental parameter relations used to determine the $, 
and Oj from the parameters ai and b, are as follows. 

(i) The roots pi of the characteristic equation 

n 

i= 1 
pn+an-lpn-l+... +ao = n @-pi). 

(ii) From the roots pi the coefficients $j are calculated subject to 
n 

,= 1 (An-$hlAn-l-- . . . - (bn)  = (A-A,) ,  

where A, = exp (pi A). 
(iii) The coefficients 0, are evaluated from the relation 

where 

An AM(n,m) model is adequate when changing the orders n and m of the model 
causes no significant reduction in the sum of the squares of the a, and the a, are un- 
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correlated. The test for no significant improvement is based on an F-test. If n and m 
are increased simultaneously, usually in steps of two, and 

( A  6) 
(Xa$O) - Xa;(l))/(Sn + Sm) 

Xag(l)/(N - n - 6n - m - Sm) 
< Fa(& + am, N - n - 6n - m -am), 

where 
Xu:@) = sum of squares for AM(n, m),  

Xa;(l) = sum of squares for AM(n + Sn, m +am), 

then the AM(n,m) model is adequate. Once the criterion (A6)  has been met, it  is 
possible to simplify the model after examining the confidence intervals for the para- 
meters and then re-estimating the model without those parameters whose confidence 
intervals include zero. 

By the strategy outlined above, an AM model can be determined from discrete data. 
However, large differences in the magnitudes of the parameters a, and b, can cause 
numerical ill-conditioning during estimation. This condition is due to the nature of 
the data reflected by the characteristic roots pi. As indicated by ( A  3 ) ,  a. is the product 
of all the roots, a1 is the sum of the products of n - 1 roots, . . ., and an-l is the sum of 
all the pi. If, for example, the magnitudes of the characteristic roots are of the order 
of 10 and an AM(3,O) model is to be estimated, then a2, a1 and a, will be of the order 
of 10, 100 and 1000 respectively. A similar situation occurs when the roots are less 
than one in magnitude. 

To numerically condition the estimation problem, an approach similar to time 
scaling for analog computers can be used. A fictitious sample int,erval A* = A/a can 
be used to estimate an AM model of the same form as (A 1) but with scaled parameters 
a: and b:. From experience, the scale factor a can be selected using the initial values 
a\o) and by) determined using the original sample interval A and the relation 

a = integer [loglo(ado))/ - n]. ( A  7) 

When converting from a: and b: to ai and bi the transformations are 

1 a, = 

bi=b:a-i, i = 1 , 2  ,..., m, 

pi = p i  a. 

i = 0,1, ..., n- 1, 

* 

However, the parameters of the USAM model (A 2) are unchanged by this transforma- 
tion. 

This technique is effective in conditioning most AM(n, m) estimation problems. 
Furthermore, from (A 7),  if a is a power of ten, then the inverse transformation given 
by (A8) corresponds merely to shifting the decimal point in the parameters a:, 
b: and p:. 
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Plate 1 
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FIGURE 3. (a) Photograph of a 3-5 x 4-5in. sample of base sheet paper taken with transmitted 
light and (b)  digitized light-transmission profile with A = 0.02 in. and 1024 points for formation 
condition 1. 

DEVRIES AND WU (Facing p .  272) 


